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Summary 
 
     A dual-level parallel procedure is presented for computing large databases to support 
aerospace vehicle design. This procedure has been developed as a single Unix script within the 
Parallel Batch Submission environment utilizing MPIexec and runs MPI based analysis software. 
It has been developed to provide a process for aerospace designers to generate data for large 
numbers of cases with the highest possible fidelity and reasonable wall clock time.  A single job 
submission environment has been created to avoid keeping track of multiple jobs and the 
associated system administration overhead.  The process has been demonstrated for computing 
large databases for the design of typical aerospace configurations, a launch vehicle and a 
rotorcraft. 
 

Introduction 
 

     Design of aerospace vehicle configurations involves a large number of computations with 
varying parameters. For example, designing launch vehicles to fly safely through the transonic 
regime requires thousands of computations at different Mach numbers, angles of attack, 
frequencies, and structural modes [1].  Safe design of rotorcraft, typically dominated by flow 
complexities and non-linear structural behaviors, requires a large number of computations with 
different flight scenarios [2, 3]. 
 
    Currently, low-fidelity models are in use to cope with the requirement of rapid turn-around 
time needed in the design process [4]. For launch vehicles, low-fidelity linear-aerodynamic 
theory, such as the vortex lattice method for subsonic flows and Mach box theory for supersonic 
flows are used. In order to accurately model moving shock-waves and flow separations, high 
fidelity equations, such as those based on the Navier-Stokes equations for aerodynamics [5] and 
the non-linear structural dynamics equations for structures [6], are needed. Numerical solution of 
these high fidelity equations is computationally expensive.   For example, given the same 
structural complexity,  the ratio of computational time required for  Navier-Stokes-based  
computations to linear aerodynamics computations for a flexible rectangular wing is about 2000  
to 1 [7]. This ratio can significantly increase with increasing geometric complexity. Similar 
massive computations are required in designing launch vehicle structures [8]. 
 
   In general, engineering design requires solutions for a large number of computationally 
intensive cases.  Typically, the design process is a time-critical series of events, and timely 
generation of data plays a crucial factor [4]. Therefore, fast computations with reasonable turn 
around time are essential for the design process. 
 
    Cluster computers [9] have facilitated the fast turn around times needed by design engineers.  
Most high fidelity single-case computations [10] employ message passing interface (MPI) [11]. 
However, in order to make high-fidelity-based computations practical for design, a procedure 
that can generate data for a large number of cases in the least amount of time is needed. Some of 
the earlier efforts to run multiple cases such as AeroDB [12] and GNUparallel [13] were focused 
on submitting the multiple jobs (one for each case) on multiple computers. The number of cases 
was  limited by the total number of batch jobs allowed on a particular computer.  These tools had 
the ability to monitor jobs remotely, but the input parameters were limited to flow quantities such 
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as Mach number and angle of attack [12]. In addition they depended on net-work performance 
for fast turn-around time.  
 
   Recently, a procedure based on MPIexec [14] which ran multiple cases in a single job on a 
single image cluster was presented in Ref. [15].  In addition to flow parameters the procedure in 
Ref. 15 allowed variations of geometry-dependent parameters such as structural mode shapes. 
MPIExec was used to initialize a parallel job within a Parallel Batch Submission (PBS) 
environment [16]. MPIexec uses the task manager library of PBS to spawn copies of the 
executable on the nodes in a PBS allocation. In Ref .15 the focus was to run maximum number 
cases simultaneously in a single PBS job environment. The number of cases are independent of 
the maximum number of jobs allowed on the system.  Reference 15 demonstrated generation of a 
1000-case design database within 135 minutes of wall clock time for a launch vehicle by using 
the Navier-Stokes equations. Cases considered involved variations in Mach number, angle of 
attack and structural mode shape. This procedure does not incur system overhead associated with 
the starting and closing multiple jobs like the procedures presented in Refs. 12 and 13.  
 
   Reference 15 did not use MPI. In this paper, the Ref. 15 approach is further extended to 
accommodate increased complexity of the individual cases using MPI-based analysis software. 
The process is demonstrated by generating data for two aerospace configurations, a launch 
vehicle and a rotorcraft. Parametric studies that not only vary flow parameters but also include 
variations in structural mode shapes and frequencies are performed. Running multiple cases in a 
single job environment will facilitate communications directly between two cases when needed.  
 

Approach 
 

   An important step in the engineering design is an iterative process that involves computations 
of a repetitive nature for varying input parameters. These computations take the same amount of 
time for each case. For example, to design a launch vehicle; a large database is required for a 
given range of Mach numbers, angles of attack, structural frequencies and modes [17].   It is 
assumed that all cases are numerically similar and take the same amount of time.  
 
    In general, the database generation process for design can be expressed as a multidimensional 
matrix assigning indices for each parameter. As an example, for the case of a launch vehicle i, j, 
and k represent Mach number (M), angle of attack (α),  and  mode shape(Φ), respectively. The 
total normal force on a launch vehicle at the ith M, the jth α and the kth mode is represented by 
CNijk.  
 
    In this work a run matrix for design data will be generated using PBS with many simultaneous 
executions of MPI based analysis software. This involves building logic in the PBS script to 
fetch the appropriate inputs. Using matrix representation of the database needs multiple loops in 
the script, which can introduce overhead. As a result, a contiguous representation of data is used.  
The element e in contiguous representation corresponding to an element in matrix is defined [18] 
as     
 
                                                                                                                                                       (1) 
 

e =   ! p! ! ! d!

!

!!!!!

!
!

!!!
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where n is the number of dimensions, dq is the size of  qth dimension, pr  position in the matrix 
corresponding to rth dimension.  The second large symbol above is an upper-case Greek letter pi. 
It indicates the product of many factors in the same way that an upper-case sigma indicates the 
sum of many terms. Pi stands for "product," sigma for "sum." For example in a three dimensional 
matrix case (n = 3) of size 8 x 10 x 6 (d1 = 8, d2 = 10 d3 = 6),  the element at position <p1 =2, p2 = 
4, p3 = 1>  results in an index in contiguous representation e =  2x(10x6) + 4x6 + 1x1 = 145. 
Equation 1 is used in PBS scripts to fetch appropriate data from disk. 
 
    In the design of an aerospace vehicle the use of an aerodynamic influence coefficient matrix 
(AIC) [19] is very common. The AIC matrix [A] represents the changes in the aerodynamic 
loads due to perturbations of structural deformations.  Deformations are represented in the form 
of modes [20].  Aij represents the modal force on the ith mode due to structural perturbation in the 
jth mode. This allows the designer to compute the loads needed for any deformation in the design 
process using 
                                                    {d} = [Φ]{h}                                 (2) 
 
where {d} represents  displacements, [Φ] is the modal matrix and h represents generalized 
displacements. 
 
The modal force vector can be computed using   
 

                                            }]{[}{ hAF = .             (3) 
 
    Now the rest of the challenge lies in computing [A] for various parameters. Based on low-
fidelity methods, computing [A] is well automated in codes such as NASTRAN [21]. However 
the accurate analysis for design of aerospace vehicles needs high fidelity Navier-Stokes flow 
equations. In this effort the OVERFLOW [22] code is used to solve the Navier Stokes equations.  
 
    In order to accomplish fast generation of data using high fidelity equations, a script that uses 
MPIexec with MPI based parallel codes has been developed. In this script, a certain number of 
cores are dedicated to each case to facilitate use of MPI.  The number of cores assigned to each 
case is termed as rank count (RC). All cases are run in parallel using the MPIexec utility.  
 
   The above procedure has been implemented on the Pleiades super cluster that has Hapertown 
(HAR), Nehlam (NEH), Westmere (WES) and Sandy Bridge (SAN) nodes [23]. The maximum 
number of cores permissible and associated memory are given in Table 1. Since both HAR and 
NEH have 8 cores, only HAR is selected in this study.   
 
   Table 1: Nodes on Pleiades Supercluster 
Node Cores Memory/Node Speed in GHz 
Harpertown 8 8GB 3.00 
Nehalem 8 3GB 2.93 
Westmere 12 24GB 2.93 
Sandy-Bridge 16 32GB 2.6 
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    Present approach is aimed towards generating [A] of Eqn. (3). For this a given configuration is 
represented by several modes. The effects of modal perturbations are independently computed. 
By using a linear combination of modal loads, aerodynamic forces for any arbitrary displacement 
can then be computed using Eq. (2). The following approach is taken to compute the AIC matrix 
using CFD code: 
 

1. For a given configuration a suitable CFD grid is generated. 
2.  Using an algebraic approach, deformations due to mode shapes are superimposed on the 

base grid of the rigid configuration.   
3. Inputs for different cases with varying angles of attack (AOA), Mach numbers, 

frequencies and modes are generated based on user specifications. It is assumed number 
of iterations specified is adequate for convergence for all cases.  

4. Data is spawned to different directories that are contiguously numbered.  
5. All cases are computed running each case on a different group of cores using ‘Rank’ 

identification. 
6. Wait till all jobs are complete. Successful completion of all jobs can be tracked by 

monitoring the size of the residual files.  Once PBS job is successfully competed all 
residual files will be of the same size.  It is assumed that user has selected appropriate 
parameters such that results converge at the end of the job completion.     

7. After all jobs are successfully completed, [A] matrix is assembled.   
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.1 A flow chart of dual level parallel          Fig 2 The script for the core of the RUNDUA  
process RUNDUA                                              for 25 case run with RC =16.  
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   A flowchart of the above process called RUNDUA, based on a single Unix script in the PBS 
environment is shown in Fig. 1. The main script for the RUNDUA is given in Fig. 2. 
PBS_NODEFILE is the name of the file that contains the list of the nodes assigned to the job.  
CASE${i} is the directory assigned for ith case and ‘overrunmpi’ is a special script to that 
executes the OVERFLOW [22] code. 
 
 

Demonstrations 
 

   The RUNDUA script is demonstrated for National Launch System (NLS) [24] and HART II 
rotorcraft [25]. Flow computations are made using the overset-grid based OVERFLOW code that 
solves the Navier-Stokes equations. Previously validated grids are used in this work.  Structural 
flexibilities of configurations are modeled using mode shapes. 
 
Demonstration for Launch Vehicle  
 
    A schematic diagram of the NLS configuration [24] is shown in Fig. 3. The grid selected for 
this configuration has 151, 121 and 50 points in the axial, circumferential and radial directions, 
respectively. This gird was used in Ref. 15 where the computed results were compared with 
experiment. 
 
 

 
 Fig. 3 National Launch System (NLS). 
   
    Computations are made for 1,000 cases involving 20 Mach numbers (M∞) ranging from 0.75 
to 1.225, and 10 angles of attack  (α ) ranging from 0.0 to 4.5 degrees, and 5 modes (1 rigid and 4 
flexible modes). Figure 4 shows the distribution of pressure coefficient cp for the first bending 
mode at M∞ = 0.90 and α = 0.0 deg. 
 
     First the performance of the HAR, WES and SAN nodes are studied for a single case. Each 
case is run for 2000 time steps as required for a converged solution on the deformed 
configuration [15].  Figure 5 shows the wall clock time in microsecs required per step per grid 
point. Computations are made using RC of 1, 4 and 8 for a HAR node. Then it is switched to a 
WES node for RC = 12, followed by a SAN node for RC =16. 
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    On the HAR node, computations speed-up by a factor of about 3 for the increase in  RC  from 
1 to 4  and by a factor of about 2 when RC  increases from 4 to 8.  Switching to RC = 12 on 
WES gives another speed-up of 1.5. Finally a factor of 1.25 speed-up is obtained for RC = 16 on 
the SAN node. The rate of gain in the speed is significantly reduced after RC = 4.  This can be 
attributed to the small grid size used in this specific demonstration case. However solutions using 
small grids are needed in the preliminary design stage that requires large number of cases. 
 
   The focus of this paper is to generate data for maximum number of cases with the highest 
possible fidelity within a reasonable turn around time.  To obtain a one day turn around, a 
request for a total number of cores of about 4000 or less is feasible for the Pleiades super cluster 
[15, 22].  From Fig. 5 it is seen that the rate of improvement in speed decreases significantly 
after RC = 4. Therefore for this case RC = 4 is used for the rest of the computations. Results are 
demonstrated using the HAR node. Each node will run 2 cases without wasting cores since RC = 
4 is a factor of number of cores in the HAR node.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4 Cp contours at M∞ = 0.90, α = 0.0 deg.                  Fig. 5 Performance on different nodes  
  
    Changes in M∞ and α are made in input for OVERFLOW and changes in mode shapes are 
built into the grid. ‘inputij‘ represents  input for ith Mach number and jth angle of attack. ‘gridk‘ 
represents the grid for the kth

 mode. The case number in a contiguous numbering scheme 
required for RUNDUA is computed using Eq. (1) by setting n = 3 and replacing p1, p2 and p3 by i 
j and k respectively.  For this case the values of d1, d2 and d3 in Eq. (1) are 20, 10 and 5, 
respectively.  
 
    Single job runs are made using RUNDUA in increments of 100 cases up to 1000.  On each 
node a case is run for 2000 steps. Number of steps required for computations is determined based 
on the convergence of the axial force corresponding to the second bending mode.  For example 
at M∞ = 0.90 and   α = 2.5 degrees the axial force changed less than 0.1 percent from 1900 to 
2000 steps.   
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   A stand alone case using 4 cores required 27 minutes of wall clock time. From run to run, the 
number of angles of attack are increased from 1 to 10. Figure 6 shows a plot of the percentage 
increase of wall clock time with respect to the wall clock time required to run a single case. The 
increase is gradual and reaches 15% for 1000 cases using a wall clock time of 31 minutes. This 
increase is attributed to internal system time in grouping the cores with the increase in number of 
cases.  Even with a 15% increase in wall clock time, 1000 cases can be completed in a 
reasonable time. Similar computations without using MPI required a wall clock time of 135 
minutes as reported in Ref. 13.  The conventional approach of submitting multiple PBS jobs will 
have over head associated with start and ending jobs that user does not keep track of it. 
 
   The results from 1,000 cases are summarized in Fig. 7. Plots of normal (side) force as a 
function of M∞ and α are shown for the rigid case and the first 4 flexible modes. All modes have 
significant influence on the normal forces. The effect is more pronounced near M∞ = 1.0. The 
rate of change in normal force near transonic Mach numbers is more pronounced for higher 
modes.  Data from such plots are used in designing launch vehicles. 
 
   To compare with conventional approaches an attempt was made to run 1000 individual cases 
similar to that in Ref. 12 as 1000 separate PBS jobs. However, system restrictions on Pleiades 
[23] did not allow more than 300 PBS jobs.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6 Percentage increase in wall clock time of PBS jobs compared to a PBS job with single 
case for NLS configuration using rank count  4 on HAR node.   
 
Rotorcraft (HART-II) 
    
    For the next demonstration, computations are performed for the HART-II rotorcraft model 
[25] shown in Fig. 8.  Blades are 2 meters long with 0.121m chord and consist of NACA 23012 
airfoil sections.  Each blade has a built-in linear twist of -8 deg and a square tip. The detailed 
structured grid for the OVERFLOW code was generated by Doug Boyd of NASA Langley [5]. 
Based on that grid, time accurate aeroelastic computations were made with 40 million grid points 
[3].   The solution required about 30 hrs of wall clock time with 1024 Harpertown cores for 4 
revolutions. In this paper, computations are made for the blade-system without the body. Blade 
grids from the original grid [5] are used. 
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Fig.7 Design database for Launch Vehicle, normal force coefficient versus Mach number M∞ and 
angle of attack α. 
 
    Unlike in Ref. 3 where the focus was on detailed computations for a single case, in this effort 
the focus is to generate data for a large number of cases. 
 
    In order to understand flight conditions that may lead to dynamic instabilities, it is necessary   
to compute flutter boundaries of rotorcraft [26]. Computation of flutter boundaries that involves 
solving Eigen value equations needs a large database involving different rotating speeds, modes, 
and frequencies. Recently, a procedure to use Navier-Stokes-based aerodynamic data for 
computing flutter speeds associated with a single isolated rotorcraft blade was presented in Ref. 
27.   Using MPIexec-based, single-level parallel computations it was demonstrated that a flutter 
boundary needing data for 10 rotating speeds, 2 modes and 5 frequencies can be computed 
within about 25 hrs of wall clock time using 100 cores on the Pleiades super cluster. The grid 
used in that study consisted of 1.8M grid points.  In this paper the previously introduced 
RUNDUA will be demonstrated to compute data for flutter computations for a 4 bladed-system. 
 
    Based on the grid from Ref. 5, the total grid size needed for four bladed rotor system is 20 
million grid points. In order to test the adequacy of the grid, computations were made for base 
line conditions [25] (forward speed 200 ft /sec) using the aeroelastic deformations computed in 
Ref.  3. The solution required 3 revolutions with 3600 time steps per revolution for results to 
reach a periodic motion. Resulting integrated air loads compared well with the experiment [25] 
similar to that reported in Ref. 3.  Figure 9 shows a plot of surface pressures on the blades. 
Figure 10 shows a snapshot of vorticity magnitude contours that were generated over 3 
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revolutions. The development of tip-vortices and blade-wake structure can be seen in Figure 10. 
This detailed predictive capability of the Navier-Stokes equations used in the present simulation 
helps to generate accurate data for stability computations including the effects of complex flow 
phenomena such as blade-vortex interactions, dynamic stall etc.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 8 HART-II rotorcraft. 
 
    For computing flutter boundaries several flow computations at various rotating speeds, modes 
and frequencies are needed with the use of the Navier-Stokes equations. To compute such data, a 
fast procedure will be demonstrated using RUNDUA. 
 
 
  
 
 
 
 
 
 
Fig. 9 Snap shot of surface pressures on           
 
 
 
 
 
 

Fig. 10 A plot of vorticity-magnitude for blade-system of HART II. 
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   Since the grid is larger than that for the launch vehicle case, the SAN node that allows a 
maximum RC of 16 per node is selected. The value of RC required is determined based on 
computations for a PBS job with single case. Figure 11 shows a plot of wall clock time needed 
per grid point per step. There is a continuous improvement in speed from RC = 1 to 40.  It was 
decided to use RC = 32 (a multiple 16 corresponding to number of cores on SAN) for further 
computations to keep the wall clock time around 15 hrs.  The RC value is selected as a multiple 
of 16 to avoid splitting of the node between cases, which adds communication overhead.  A 
single 100-case PBS job is possible assuming a request for 3200 cores is feasible for less than 
one-day turn-around time.   
 
      Input data for 10 rotating speeds ranging from 55 to 95 radians/sec and 2 modes with 5 
frequencies are prepared. The changes in rotating speed are made in the input for OVERFLOW. 
The changes in frequencies for different modes are made through an external input data called 
the ‘motion file’ of the OVERFLOW code [27].  Figure 12 shows a plot of tip responses to the 5 
torsional frequencies considered. 
 
 

 
 
Fig. 11 Effect of rank count on wall clock time for HART-II on SAN nodes.  
 
      Unsteady 100-case computations are performed for three rotations with 3600 steps per 
revolution when responses reached a periodic motion.  A wall clock time of 23.15 hrs was 
required to complete all 100 cases, which is 1% above that required to run a single case.  
 
   Fourier transformations of force outputs from OVERFLOW are performed to extract data 
useful for flutter computations [27].  This process is built into RUNDUA using an Unix script 
and FORTRAN post processing modules (see Appendix A).  Use of Eq. (1) is embedded I the 
script. Figure 13 shows plots of sectional lift magnitude at 20, 40, 60 and 80 percentage of the 
blade radius for varying rotational speeds and 5 torsional modes. Similar plots can be extracted 
for other aerodynamic quantities such as moments.  Quantities from these plots can be used as 
input into the AIC matrix [A] of Eq.(8) in Ref. 27 to compute flutter speed.  
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Fig. 12 Tip twist responses of HART II blades associated with 5 frequencies.   
 
   
    In order to compare the turn around time between the present single job environment and the 
multiple job environment used elsewhere, computations were made for HART-II by submitting 
one job for each case.  The present approach took 5% less turn-around time.  However, the turn 
around time is susceptible to system load and job priorities, which could vary.  Therefore, turn-
around time can be used as a secondary guideline but not as the prime criteria to judge the 
efficiency of the process.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 13 Effect of rotating speed and torsional frequency on predicted sectional lift. 
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Conclusions 
 

    A dual-level parallel procedure has been developed for computing large databases to support 
aerospace vehicle design.  The procedure has been developed as a single Unix script in the 
Parallel Batch Submission environment by utilizing MPIexec to run MPI-based analysis 
software. The procedure provides a single-job submission environment for the user and caters to 
the needs of aerospace design engineers who need to run a large number of cases using software 
based on high fidelity methods.  Results have been demonstrated for two typical aerospace 
configurations, a launch vehicle and a rotorcraft. Using a moderate size grid of about 1 million 
points, it has been demonstrated that 1000 cases can be run within about half an hour of wall 
clock time to generate preliminary design data for a launch vehicle.  For a 4-bladed rotorcraft 
system using about 20 million grid points, it has been demonstrated that 100 cases can be run 
within about 15 hrs of wall clock time.  For both cases, it was assumed that a request of 4000 
cores was feasible to guarantee less than a one-day turn-around. A demonstration case showed 
that turn around time of this approach was similar to that of submitting many individual jobs but 
does not involve overhead of system tasks associated with the start and end of multiple jobs. The 
number of cases that can be run at a time is not limited in the present approach. Unlike previous 
approaches this single-job environment approach was suitable for extending to three-level 
parallel computations that include direct MPI communications among different application 
codes.  
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APPENDIX-A – List of RUNDUA script as applied to demonstration cases. 
 
#!/bin/csh 
#PBS -l select=250:ncpus=16:model=san,walltime=08:00:00 
#PBS -W group_list=**** 
#PBS -q normal 
set echo on 
module purge 
module load comp-intel/2011.7.256 
module load mpi-sgi/mpt.2.06r6 
cd /nobackupp1/gguruswa/HART2/BLADES/DLEV/EXPORT 
rm -r -f CASE* 
set MAX_CASES = 099 
set n1 = 0 
set n2 = 9 
set n3 = 0 
foreach i (`seq -w 0 $MAX_CASES`) 
  mkdir CASE${i} 
  cd CASE${i} 
  cp ../grid* . 
  cp ../mixsur.fmp . 
  cp ../xrays* . 
  cp ../overrunmpi . 
  cp ../overflowmpi . 
  cp ../*xml . 
  echo "$i $n1 $n3" 
  cp ../mode00$n1.txt  motion.txt 
  cp ../input$n3 test.1.inp 
  cd .. 
  if( $n1 == $n2) then  
     set n1 = -1 
    @ n3 = $n3 + 1 
  else  
  endif 
 @ n1 = $n1 + 1 
  end 
  wait 
  set RANKS = 40 
  setenv F_UFMTENDIAN big 
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  setenv MPI_MEMMAP_OFF 1 
  set FIRST = 1 
   set LAST = `expr $FIRST + $RANKS - 1` 
   set THE_REAL_PBS_NODEFILE = ${PBS_NODEFILE} 
  set spd = 0 
  set fre = 0 
  foreach i (`seq -w 0 $MAX_CASES`) 
 # $i will vary from 001 to 025 
 echo $i $FIRST $LAST 
 cd CASE${i} 
 sed -n "${FIRST},${LAST}p" < ${THE_REAL_PBS_NODEFILE} > 
nodefile_group$i 
 setenv PBS_NODEFILE nodefile_group$i 
 overrunmpi -np 40 test 1& 
        set FIRST = `expr $FIRST + $RANKS` 
        set LAST = `expr $LAST + $RANKS` 
cd .. 
end 
wait 
foreach i (`seq -w 0 $MAX_CASES`) 
        cd CASE${i} 
        cp rotor_1.onerev.txt ../RESULTS1/force$spd$fre 
        @ fre = $fre + 1 
        if ( $fre == $n2)  then 
        set fre = 0 
        @ spd = $spd + 1 
        endif 
cd ..     
end 
wait 
cd RESULTS1 
cp ../*.f . 
rm -r -f fouout* 
ifort extfor.f 
mv a.out forexe 
ifort foucom.f  
mv a.out fouexe 
 set r = 1 
 while($r <= 6) 
   echo "for rad station = $r"  
   set s = 50 
   foreach i (0) 
     @ s = $s + 5 
     set b = 250 
     foreach m (0 1 2 3) 
         @ b =  $b - 25 
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         cp force$i$m fort.1 
# Call FORTRAN module to extract force data 
./forexe <<EOF 
$r 
EOF 
          cp fort.13 fourier.inp 
#Call FORTRAN module to compute Fourier Coef  
./fouexe <<EOF 
$b $s 
EOF 
          echo "$i$m done" 
cp fourier.out fouout$i$m$r  
          end 
     end 
wait 
@ r = $r + 1 
End 
 
 
 
 
 


